INTRODUCTION
Odontogenic keratocyst (OKC) is a benign odontogenic cyst with aggressive behavior and a high recurrence rate. In the 2005 edition of the World Health Organization Classification of the Head and Neck Tumors, the odontogenic keratocyst was reclassified from a cystic to a neoplastic lesion, and the term “keratocystic odontogenic tumor” (KCOT) was coined. The KCOT contributes approximately 11% of cysts of the jaws & is most commonly located in the mandibular ramus & angle. Most common site is the mandibular third molar region. Remnants of odontogenic epithelium persists in oral tissues after odontogenesis is complete and a variety of tumor and cysts may arise from these remnants.

CASE REPORT
A 34 year old female patient came to the dental clinic complaining of pain and discharge in relation to the extraction site in the right lower posterior region. Pain was localized and dull in nature. There was no facial asymmetry or evidence of swelling over the cheek extra orally. The patient underwent an extraction of 48. But the pain persisted and there was also a discharge from the extracted site.

An Excisional biopsy was performed and 3x1.5cm in size, firm in consistency was obtained. According to histopathological examination lesion was diagnosed as odontogenic keratocyst. Microscopic features of excised tissue showed odontogenic epithelial lining and connective tissue wall. The cyst is lined by parakeratinized stratified squamous epithelium which is about 4-6 layers thick without rete ridges. The parakeratotic layer has corrugated surface and there is evidence of columnar palisaded basal cell layer.

Figure: 1.
DISCUSSION

The term Odontogenic Keratocyst was introduced by Philipsen in 1956. Keratocystic odontogenic tumor is believed to be a developmental cyst which originates from the dental lamina or its remnants. The first description of a solid variant of KCOT was reported by Ide et al in 2003. KCOT is more common in males than females and occurs over a wide age range and is diagnosed during second to fourth decade. OKC has a predilection for occurring in the mandible as compared to maxilla. OKC has extension through the bone much more than bone expansion, thus until tumor does not reach its significant dimensions, expansion is less important. OKC is difficult to diagnose clinically due to lack of specific clinical and radiographic characteristics. Radiographically OKC presents as a unilocular or a multilocular radiolucency with scalloped and well defined margins.

Histologically OKC shows an epithelial lining consisting of a uniform layer of stratified squamous epithelium usually six to eight cells in thickness. Cystic lumen may contain a clear liquid or it may be filled with a cheesy substance that cosisits of keratinaceous debris. Basal epithelial layer consists in a palisaded layer of cuboidal or columnar epithelial cells, which are often hyperchromatic. Small daughter cysts, cords or islands of odontogenic epithelium may be observed within fibrous wall. The treatment options for keratocystic odontogenic tumors varies from simple curettage, enucleation (in combination with cryotherapy or Carnoy’s solution), marsupialization, decompression and secondary enucleation, and resection (marginal or segmental). Decompression and marsupialization are the most common used procedures in cases of a large mandibular and maxillary tumors, because they can save the anatomical structures including adjacent teeth, maxillary sinus or inferior alveolar nerve.

CONCLUSION

The OKC has been the subject of much debate with respect to its origin, its growth, and treatment modalities. They are known for their peculiar behaviour, varied origin, unique tendency to recur. Post operative follow up is essential following surgical management due to its high recurrence.

REFERENCES