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INTRODUCTION 

Ovarian cancer (OC) is the fifth most prevalent cause of 

mortality and the most common cause of death among 

gynecological malignancies, with a survival rate of less 

than 30% within five-years.
[1]

 Late diagnosis and a lack 

of appropriate treatment choices for resistant disease 

contribute to the high death rate of OC.
[2]

 OC is currently 

treated by tumor cytoreductive surgery followed by 

adjuvant platinum-based chemotherapy which includes 

cisplatin.
[3]

 Cisplatin arrests the cell cycle and interferes 

with DNA repair mechanisms by generating adducts with 

the purine bases on the DNA, inhibiting replication, and 

transcription, and ultimately leading to apoptosis in 

cancer cells.
[4]

 cisplatin-based treatment is effective, but 

it has a significant negative impact on treatment 

outcomes due to drug resistance that represents the 

leading causes of increased mortality in patients with 

advanced cancer.
[5]

 Multiple explanations have been 

proposed for the mechanisms of drug-resistance that can 

be developed in ovarian malignant tumor cells, that 

include decreased drug concentration inside the tumor 

cells, increased detoxification, increased DNA repair, 

apoptotic dysregulation, alterations in the tumor 

microenvironment, and evasion of the host immune 

response.
[6], [7], [8], [9], [10] 

Long non-coding RNAs (lncRNAs) are transcripts that 

are composed of more than 200 nucleotides with no 

protein-coding potentiality and have been identified to be 

expressed exclusively in some differentiated tissues and 

cancer types.
[11]

 LncRNAs have numerous roles in gene 

regulation, nuclear domain organization and cis or trans 

transcriptional regulation.
[12]

 lncRNAs have also been 

demonstrated to control carcinogenesis, invasion, 

metastasis, and cancer therapy resistance.
[13], [14] 

 

The microarray assay showed that are some lncRNAs 

that were dysregulated in cisplatin-resistant ovarian 

cancer tissues as contrasted with cisplatin-sensitive 

tissues.
[15],[16]

 The data imply that the resistance behavior 

of cisplatin-resistant in patients with ovarian cancer is 

probably related to these differentially expressed 

lncRNAs, including the lnc-RP11_697E, which may be 

used as a potential biomarker for diagnosis or as a 

therapeutic target for cisplatin-resistant ovarian 

cancer.
[17]

 lnc-RP11-697E is a long noncoding RNA that 

targets the gene Hepatocyte Nuclear Factor 1 (HNF-

1β).
[17]

 HNF1 β is a transcription factor that has a crucial 

role in the development and differentiation of numerous 

organs, including the liver, kidney, lung, gonads, biliary 

system, and pancreas.
[18]

 The HNF-1β protein affects the 
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expression levels of many genes that are involved in cell 

cycle regulation, apoptosis susceptibility, and oxidative 

stress response.
[19], [20] 

 

This study aims to examine the predictive utility of the 

lnc-RP11_697E and its target gene HNF-1β for 

Cisplatin-resistance in OC patients by correlating their 

expression levels with the response to Cisplatin therapy, 

as well as to evaluate their diagnostic value in OC. 

 

2. MATERIALS AND METHODS 

2.1. Study Population 

This study included 25 patients with OC from Ain Shams 

Internal Medicine Hospital's oncology department and 25 

healthy ovarian (non-cancerous) tissues as the control 

group. Formalin-fixed paraffin-embedded tissue (FFET) 

from OC patients who are eligible for the study, as well 

as healthy ovarian tissue from age-matched women 

(patients aged >25 years old), was collected from 

patients undergoing adenexectomy for uterine prolapse 

or myoma. Patients with OC were given three to four 

cycles of intravenous platinum-based chemotherapy in 

the form of cisplatin and were not given any other 

chemotherapy. 

 

Fifty ovarian tissue samples that were embedded in 

formalin-fixed paraffin-embedded (FFPE) were gathered 

and examined. Depending on how well they responded to 

the standard treatment plan of cisplatin-based 

chemotherapy, patients with OC were subdivided into 

two subgroups: the cisplatin-sensitive subgroup (n = 16) 

and the cisplatin-resistant subgroup (n = 9). Twenty-five 

patients with benign ovarian lesions who were not 

diagnosed as cancer patients made up the control group. 

 

The protocol of this study was approved by the 

Institutional Review Board (IRB) Ethics Committee of 

Ain shams University prior to patient recruitment. 

Furthermore, this study was carried out in compliance 

with the World Medical Association's Helsinki 

Declaration.
[21]

 Prior to the study, we received written 

informed consent from all subjects included in this study 

and told them that their information, as well as their data 

and medical records, would be kept confidential. At the 

time of enrollment, each patient was given a unique 

identifying number. 

 

2.2. Total RNA extraction and reverse transcription 

from FFPE tissue blocks 

The deparaffinization solution (Cat. No. 19093) was used 

to deparaffinize FFPE tissues. The total RNA was then 

extracted using the RNeasy FFPE Kit (Cat. No. 73504). 

The technique was carried out in accordance with the 

manufacturer's instructions (Qiagen, Hilden, Germany). 

The purity of the extracted RNA was determined by 

calculating the ratio of the optical densities that were 

measured at wavelengths 260 and 280 nm using an 

ultraviolet (UV) spectrophotometer (Eppendorf, 

Germany). In a total volume of 20 μl, total RNA was 

reverse transcribed using the QuantiTect RT kit (Cat. No. 

205311) in accordance with the manufacturer's 

instructions (Qiagen, Hilden, Germany). The reaction 

mixture was adjusted at 37 °C for 60 min, then at 95 °C 

for 5 min to inactivate Quantiscript Reverse 

Transcriptase enzyme.  Undiluted reaction mixtures were 

then transferred to a -20 ºC freezer to be stored till 

applying real time qPCR. 

 

2.3. Gene expression analysis by Quantitative real-time 

PCR (qPCR) 

The cDNA was amplified using primers sequences that 

are specific for the lnc-RP11-697E and HNF-1β. The 

used primer sequences are [For Human lnc-PR11-

697E22.2; ID: LPH25763A; RT2 lncRNA primer assays 

cat no: 330701] and [For Human HNF-1β; ID: 

QT00034237; QuantiTect Primer Assay, cat no: 249900] 

(Qiagen, Hilden, Germany). The gene expression was 

normalized using primer sequence Hs_ACTB_1_SG 

QuantiTect Primer Assay, cat no: 249900, ID: 

QT00095431 for β-actin housekeeping gene. 

Quantification of cDNA targets was carried out using 

RT² SYBR Green qPCR Master-mix (Cat. No. 330504) 

for lncRNA and QuantiFast SYBR Green PCR Kit (Cat. 

No. 204056) for HNF-1β and housekeeping gene. The 

reaction mixtures and cycling protocols were adjusted 

using the 5 Plex Rotor-Gene PCR Analyzer (Qiagen, 

Hilden, Germany) in accordance with the manufacturer's 

instruction. The level of housekeeping gene expression 

was utilized to do data normalization for all markers. The 

relative quantification (RQ) was calculated using the 2
-

ΔΔCt
 method and the data were presented as fold change 

(FC) of gene expression. 

 

2.4. Statistical analysis 

For normally distributed continuous variables, the data 

were presented as mean ± standard deviation, and as the 

median and interquartile range (IQR) for non- normally 

distributed variables. Frequencies and percentages were 

used to express categorical variables. For non-parametric 

comparisons between the groups, we employed the Mann 

Whitney U test. The median level of gene expression 

was used to derive the cut-off values. The specificity and 

sensitivity of biomarkers were assessed using receiver 

operator (ROC) curves. The Statistical Package for 

Social Science (SPSS-IBM, Version 23) was used for all 

statistical analyses. A p-value of < 0.05 was deemed the 

statistical significance cut-off point. 

 

3. RESULTS  

3.1. Demographic characteristics of the studied groups  

3.1.1. Age 

This current study included 50 individuals that were 

divided into two groups; group I (25) OC patients who 

received cisplatin chemotherapy, this group was then 

subdivided into two subgroups cisplatin resistant (9) and 

cisplatin sensitive (16) their ages ranged between 27 – 66 

years with mean age of 49.6±11.0. Group II (25) patients 

from age-matched women with benign tumor and their 

ages ranged between 36 -62 years with mean age of 

47.2±8.1. There was no significant difference observed 
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between the two groups (p-value>0.05), while there was 

a significant difference in the percentage of patients age 

(<50 vs >50) years in OC patients compared to patients 

with benign tumors (p=0.005) (Table 1). 

 

3.1.2. Comorbidity 

According to data in table 1 about 48% of patients with 

ovarian cancer had Diabetes Mellitus (DM), 52% had 

not. Patients with Benign tumors had Diabetes Mellitus 

(40%) and 60% did not, this means that there is no 

significant difference between the two groups in relation 

to DM (p-value > 0.05). Regarding hypertension, 84% of 

ovarian cancer patients did not show hypertension while 

16% had hypertension. For Benign tumors patients, 60% 

did not have hypertension while 40 % had hypertension 

with no significant difference between the two groups (p-

value > 0.05). 

 

3.1.3. Clinico-pathological Characteristics of OC 

groups 

In Cisplatin sensitive group patients, 14% with 

Adenocarcinoma,14% with serous type and 21% 

Mucinous, 64% with Endometroid carcinoma which is 

the high proportion rate between all Cisplatin Sensitive 

patients, While in Cisplatin resistant group, no one with 

Adenocarcinoma, 33% with serous, 11% with Mucinous 

and 55% with Endometroid carcinoma. The data 

revealed no statistically significant difference between 

the two groups (Table 2). 

 

Grade I-II (84%), Grade III- IV (16%) in Cisplatin 

Sensitive and Grade I-II (66%), Grade III- IV (33%) in 

Cisplatin Sensitive group. There is no significant 

difference (p-value=0.11) between the two groups 

regarding histopathological grade. Regarding metastasis, 

there is no significant difference between Cisplatin 

Sensitive and Cisplatin resistant (p-value=0.92). (Table 

2). 

3.2. Tissue expression levels of lnc-RP11-697E and 

HNF-1β among the studied groups 

The results showed that there was a significant increase 

in the levels of lnc-RP11-697E expression (Fig. 1a) 

while, the expression of HNF-1β gene (Fig. 1b) was 

downregulated in cases of OC compared to Benign 

tumor controls (p < 0.01) (Table 3).  

 

On comparing the median values of lnc-PR11-697 and 

HNF1b expressions among the Cisplatin-sensitive and 

Cisplatin-resistant subgroups (Table 4), a significant 

increase in the expression levels of lnc-PR11-697 in 

resistant cases compared to sensitive cases was noted 

(Median = 10.43 vs 5.028; p-value = 0.0001) (Fig. 

2a).On the other hand, a lower median expression levels 

of the HNF1b (Fig. 2b) was significantly associated with 

Cisplatin resistant ovarian tissues (p-value  <  0.05). 

 

3.3. Prediction potential of lnc-RP11-697 and HNF1b 

genes for resistance to Cisplatin therapy in OC patients 

Based on our analysis, we found that lnc-RP11-697 and 

HNF1b genes can be used as accurate predictors for the 

resistance to Cisplatin-based treatment (Fig. 3). The 

accurate cut-off value was determined based on 

Receiving operator characteristics (ROC) curve, which 

was > 8.85 for lnc-RP11-697 and < 0.124 for HNF1b. 

The sensitivities and specificities of the calculated 

biomarkers were [(For lnc-RP11-697: 80% and 86.7%, p 

< 0.002), and (For HNF1b: 70% and 80%, p < 0.03)]; 

respectively (Table 5). 

 

3.4. Diagnostic potential of lnc-RP11-697 and HNF1b 

genes for OC 

In order to assess the diagnostic value of lnc-RP1-697 

and HNF1b in OC; a ROC analysis revealed significant 

diagnostic potential for lnc-RP11-697 and HNF1b to 

discriminate ovary cancer from controls (p-value = 

0.0001) (Fig. 4 and Table 6). 

 

Table 1: Distribution of age (years) and comorbidities among the studied groups. 

Group parameter Cancer ovary (n=25) Benign tumors (n=25) Statistics 

Age (years) 
mean ± SD 49.6±11.0 47.2±8.1 

t=0.86, p-value: 0.39 (NS) 
Range 27.0 – 66.0 36.0 – 62.0 

Age group 

<50 (n=27) 
N (%) 

7(28%) 18 (72%) 
P-value= 0.005 (HS) 

>50 (n=23) 2 (20%) 20 (80%) 

Diabetes Mellitus 

No (n=28) 
N (%) 

13(52%) 15 (60%) 
P-value= 0.77 (NS) 

Yes (n=22) 12 (48%) 10 (40%) 

Hypertension 

No (n=36) 
N (%) 

21 (84%) 15 (60%) 
P-value= 0.11 (NS) 

Yes (n=14) 4 (16) 10 (40%) 

t: value of independent t-test, NS: no significant difference, SD: standard deviation, HS: High significant difference. 

 

Table 2: Clinical Characteristics of the OC Group. 

Group parameter Cisplatin Sensitive (n=16) Cisplatin resistant (n=9) Statistics 

Pathological group 

Adenocarcinoma 
N (%) 

2 (14%) 0 (0%) 
P-value= 0.63 (NS) 

Serous 2 (14%) 3 (33%) 
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Mucinous 3 (21%) 1 (11%) 

Endometroid 9 (64) 5 (55%) 

Histopathological grade 

Grade I-II 
N (%) 

13 (84%) 6(66%) 
P-value= 0.11 (NS) 

Grade III- IV 3 (16%) 3 (33%) 

Metastases 

No 
N (%) 

12 (75%) 7 (77%) 
P-value= 0.92 (NS) 

Yes 4 (25%) 2 (23%) 

NS: no significant difference. 

 

Table 3: Comparative analysis for the expression of lnc-RP11-697 and HNF-1β in OC tissue compared to benign 

tissue.  

Group parameter Cancer ovary (n=25) Benign tumors (n=25) Statistics 

Lnc-RP11-697 

median 7.8 1.04 
p-value: 0.0001 

(HS) 
Range 2.0 – 19.0 0.62 – 4.08 

75% percentile 9.78 1.75 

HNF-1β 

median 0.087 1.117 
p-value: 0.0001 

(HS) 
Range 0.017 – 1.526 0.248 – 3.41 

75% percentile 0.145 1.413 

HS: High significant difference 

 

                             
Fig. 1: Bar chart graphs present a significant difference in the expression levels of lnc-PR11-697 and HNF-1Β in 

ovarian tumors versus benign tumors (p < 0.01). (a): higher expression levels of lnc-PR11-697 was detected in 

OC tissues, whereas; the HNF-1  (b) was downregulated, when compared with benign tissues. 

 

Table 4: Comparative analysis for the expression of Lnc-RP11-697 and HNF-1Β in Cisplatin-sensitive versus 

Cisplatin-resistant OC tissues.  

Group parameter Cisplatin sensitive (n=16) Cisplatin resistant (n=9) Statistics 

Lnc-RP11-697 

median 5.028 10.43 

p-value: 0.0001 (HS) Range 2.04 – 9.45 7.83 – 19.56 

75% percentile 7.62 15.56 

HNF-1  

median 0.144 0.057 

p-value: 0.03 (S) Range 0.03 – 0.265 0.023 – 0.295 

75% percentile 0.161 0.132 

S: significant difference, HS: High significant difference. 
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Fig. 2: Bar chart graphs present a significant difference in the expression of lnc-PR11-697 and HNF-1Β in 

Cisplatin-sensitive and resistant OC patients (p-value < 0.01). (a): higher expression levels of lnc-PR11-697 was 

detected in resistant cases compared to sensitive ones, whereas; the HNF-

cases, when compared with sensitive cases. 

 

Table 5: Prediction potential of Lnc-RP11-697 and HNF-1Β genes for resistance to Cisplatin therapy in OC 

patients (ROC Curve). 

Parameter AUC 95% CI P value Cut-off value Sensitivity (%) 
Specificity 

(%) 

Lnc-RP1-697 (FC) 0.95 0.88 – 1.0 0.002 >8.85 80 86.7 

HNF-1Β (FC) 0.76 0.54 – 0.97 0.03 <0.124 70 80 

AUC: Area under the curve; ROC: Receiving operator characteristics, CI: Confidence interval, FC: Fold change. 

 

 
Fig. 3: ROC curve presents the predictive potential of lnc-RP11-697 and HNF-1Β in OC. 

 

Table 6: Diagnostic potential of Lnc-RP11-697 and HNF-1Β genes in for Ovarian Cancer (ROC Curve). 

Parameter AUC 95% CI P value Cut-off value Sensitivity (%) Specificity (%) 

Lnc-RP1-697 (FC) 0.98 0.96 – 1.0 0.0001 >2.65 96 88 

HNF1b (FC) 0.93 0.85 – 1.0 0.0001 <0.48 88 80 

AUC: Area under the curve; ROC: Receiving operator Characteristics, CI: Confidence interval, FC: Fold change. 
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Fig. 4: ROC curve presents the diagnostic efficacy of lnc-RP11-697 and HNF1β in OC. 

 

4. DISCUSSION 

Despite the fact that cisplatin has been a pivotal 

chemotherapeutic agent in the treatment of different 

forms of cancer, including OC, drug resistance has been 

a serious clinical impediment. Mechanisms of drug 

resistance inside tumor cells may include lower drug 

accumulation, increased detoxification activity, 

promotion of DNA repair capacity, and inactivated cell 

apoptotic signaling.
[22]

 

 

The current study was designed to investigate the 

potentiality of using the lnc-RNA “RP11-697E” and its 

target HNF-1β as diagnostic biomarkers for OC and as 

predictors to Cisplatin resistance in patients with OC. Up 

to date, no literatures have described the predictive and 

diagnostic potential of both lnc-RP11-697E and its target 

HNF-1β on clinical samples and all the previous studies 

were concerned to assess them experimentally by in vitro 

studies. 

 

According to the results of the current study, the 

overexpression of lnc-RP11-697E and downregulation of 

HNF-1β in OC tissues compared to the healthy non-

cancerous ones was significantly associated with 

Cisplatin-resistance. Furthermore, there was a significant 

diagnostic potentiality for lnc-RP11-697 and HNF1b to 

discriminate ovary cancer from controls. 

 

HNF-1β is a homeobox transcription factor that is 

required for the expression of several genes throughout 

embryonic development and organ differentiation, 

primarily in the liver, kidney, and pancreas. Expression 

alteration and single nucleotide polymorphisms (SNPs) 

of HNF-1β gene have now been linked to a variety of 

tumors, including endometrial, prostate, ovarian, hepatic, 

renal, and colorectal cancers.
[23]

 Epigenetic silencing of 

the HNF1b gene has also been found in certain human 

malignancies, including colorectal carcinoma, breast 

cancer, and OC.
[24-26]

 

 

Kao et al.
[27]

 was demonstrated that the overexpression of 

HNF1b is specific for ovarian CCC (clear cell 

carcinoma) among ovarian carcinomas which led to its 

use as diagnostic marker. The HNF1β gene is essential in 

the biology of ovarian CCC. HNF1β knockdown resulted 

in a significant increase in proliferation in ovarian CCC 

cells, whereas HNF1β overexpression resulted in a 

significant decrease in cell growth in the serous ovarian 

cancer cell line.
[28]

 HNF1β downregulation may 

contribute to drug resistance in ovarian cancer, and 

HNF1β may conduct drug resistance-related functions 

via four pathways, including ErbB and p53 signaling, 

focal adhesion, and apoptotic pathway.
[29]

 

 

The abnormal expression of HNF1β in tumours is linked 

to epigenetic processes and epigenetic alterations. 

Methylation of CpG island clusters is one of the 

epigenetic processes that regulates gene expression in 

humans. Hypermethylation of the HNF1β CpG island is 

one of the possible mechanisms for aberrant HNF1β 

downregulation in OC.
[30]

 Histone acetylation and gene 

amplification are two of the potential causes of HNF1β 

overexpression that was observed in cells treated with a 

histone deacetylase inhibitor in combination with a 

methyltransferase inhibitor.
[30]

 

 

Lnc-RP11-697E is a long intergenic non-coding RNA 

(lincRNA) that targets the gene HNF1β.
[17, 31]

 LincRNAs 

are non-coding RNAs longer than 200 nucleotides in 

length and have well-defined functions in chromatin 

remodeling, RNA stability, and transcription 

regulation.
[32]

 Different types of lincRNAs can regulate 

gene expression at different levels, from transcription to 

translation, either in cis (on neighboring genes) or in 

trans (on distant genes).
[33-36, 12, 37]

 Intergenic and 

antisense lncRNAs have been shown to affect cell 

behavior in a range of cancers.
[38-40]

 

 

Lnc-RP11_697E was associated with cisplatin-resistant 

ovarian cancer where it was markedly overexpressed in 

Cisplatin-resistant OC compared with the cisplatin-

sensitive OC cells.
[17]

 So, lnc-RP11-697E can be 

considered as an oncogene that has a negative effect on 

the response of ovarian cancer cell for treatment. The 

exact mechanism of how lnc-RP11-697E is involved in 

the regulation of drug- resistance in OC is unclear but 
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Gene Ontology (GO) analysis was performed to predict 

the potential function of this dysregulated lncRNA.
[17]

 It 

has been demonstrated that lncRNA modulates a variety 

of biological processes, including the mitotic M phase, 

which are directly related to drug resistance in cancer 

cells.
[41]

 Furthermore, pathway analysis revealed that this 

dysregulated lncRNA was involved in signaling 

pathways in humans, such as MAPK signaling, 

endocytosis, ubiquitin-mediated proteolysis, p53 

signaling pathway, spliceosome, cell cycle, and oocyte 

meiosis, all of which have been extensively studied in 

OC initiation and progression.
[41-43]

 

 

5. CONCLUSION  

Based on our results, the tissue expression levels of lnc-

RP11-697E and its target HNF-1β could be used as 

diagnostic biomarkers for OC and as predictors to 

Cisplatin-resistance in OC patients. Their accuracy as 

predictors for resistance and as diagnostic biomarkers for 

OC are significant. However, because of the small 

sample size in this study, more research is needed to 

comprehensively evaluate the clinical significance of 

these genes on a broad scale of OC samples. 
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